

(Hypothetical) Center for Simulation Accident Environments and Event

ASCI Academic Strategic Alliances Program Pre-Proposal Conference December 6, 1996

Purpose of this presentation

We will describe a class of centers (for accident environment and event simulation) that meet the ASAP statement and have goals/technology requirements/approaches that significantly overlap with ASCI safety goals/requirements/approaches.

Elements Essential to ASCI Centers

- Roadmap
- Technically broad problems that require an interdisciplinary approach
- Coupled physics
- Need for ASCI level computing
- Use of PSE to increase effectiveness

ROADMAP: Center Goal

This center will use simulation to make a probabilistic safety assessment of the consequences of transporting or storing complex electrical/chemical/mechanical "systems" containing explosive materials. Transportation can be by truck, airplane, train....; and "systems" can be oil tanks, armaments, gas bottles, batteries......

ROADMAP: Problem Description

Serious questions exist about the safety of transporting potentially explosive or hazardous cargo on airplanes:

- regulations are not risk-based
- regulations do not consider interaction between various cargo
- containers not comprehensively tested
- testing of new containers is expensive and poses environmental threats.

A comprehensive simulation based approach is necessary to assess the safety of the transportation method and to assist with container design for safety.

ROADMAP: One Accident Sequence (out of hundreds)

- Crash of airplane
- Dispersal of cargo and airplane fuel
- Ignition of dispersed fuel
- Subjection of container to the fuel fire
- Response of cargo and container to fuel fire
- Triggering of cargo explosive
- Response of debris and surroundings to secondary explosions.

ROADMAP: Crash of airplane (20ms)

Issues: Determine if fuel tanks and cargo holds rupture

- Interaction between airplane and soil or pavement
- Material failure of airplane -cracking and tearing of fuel tank
- Integration of aging effects in failure criteria
- Integration of manufacturing defects in failure criteria
- Resolution requirements in failure regions
- Mesh size/sub-domain integration

ROADMAP: Dispersal of cargo and airplane fuel (1-2 seconds)

Issues: Determine location of fuel, cargo and ignition sources

- Fuel dispersal, pooling, splashing
- Cargo dispersal
- Damage of cargo containers: tearing, crushing, puncturing, dropping
- Damage of cargo/release of explosive or hazardous material
- Unintended electrical power or electrical discharge

ROADMAP: Ignition of dispersed fuel

Issue: Will fuel ignite and where?

- Detonation/deflagration requirements for fuel, explosive material and combinations
- Integration of sub-grid models into large calcualtions
- Probabilistic treatment of ignition
- Coupled thermal/chemical calculations

ROADMAP: Subjection of container to fuel fire

Issue: Determine temperatures in cargo

- Fire Physics
 - combustion
 - participating media radiation
 - turbulence
 - object-fire interaction
 - fuel source
 - environment effects

ROADMAP: Response of cargo and container to fuel fire/ triggering of cargo explosive

Issues: Fate of cargo

- Coupled thermal/ chemical/mechanical processes:
 - material disintegration/ buckling
 - deflagration to detonation criteria
 - response of aged/shocked explosive
 - object-fire interaction
 - shock physics

ROADMAP: Response of debris and surroundings to secondary explosions

Issue: Fate of cargo and surroundings, dispersal of hazardous material

- description of secondary explosion and travel of shock front through (burning) debris and remaining airplane
- quasi-static mechanics determination of final configuration
- termination of fire.

Computer Science/Computational/ Mathematical Issues

- Adaptive -H & remesh
- Multi-level/Multi-grid
- parallel algorithm development for coupled mechanics
- optimization techniques
- non-deterministic techniques
- uncertainty quantification
- for ASCI-scale simulations